Application for Authorization Class B Biosolids Beneficial Use Sites

Division of Surface WaterApplication for Authorization Class B Beneficial Use Sites

Form BUA-1

Biosolids Treatment Works Information

Treatment works name: Ringler Energy, LLC					
Ohio NPDES permit #: 4IN00204*AD		County:	Morrow		
Mailing address: 2881 County Road 156					
City: Cardington	State: OH		Zip: 4315		
Operator of record: Bruce Bailey, Vice President of Technical Affairs					
Telephone number: 216-986-9999					
Email address (if available): bbailey@quasareg.com					

Certification Statement

- 1. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.
- 2. I have read and understand Chapter 3745-40 of the Ohio Administrative Code (OAC) and I agree to beneficially use biosolids in accordance with all applicable beneficial use requirements and restrictions established in Chapter 3745-40 of the Ohio Administrative Code.
- I agree to only beneficially use biosolids that have satisfied a pathogen reduction alternative and a vector attraction reduction option and have metals concentration below the pollutant ceiling concentrations as established in Chapter 3745-40 of the Ohio Administrative Code.
- 4. I agree to maintain all applicable records established in Chapter 3745-40 of the Ohio Administrative Code.

16	<u> </u>		,	f
Signature	J	Date	***************************************	***************************************

Form BUA-2

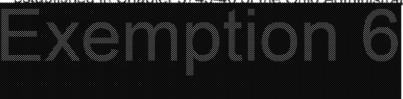
Owner Consent for Beneficial Use

Certification Statement

- I agree to allow biosolids generated by the treatment plant identified on Form BUA-1 to be beneficially used on my property at agronomic rates.
- 2. I agree to allow federal, state and local regulatory staff access to the beneficial use site for the purposes of inspecting and authorizing the beneficial use site, beneficially using biosolids, and collecting and analyzing samples from the beneficial use site. I reserve the right to ask the above parties for proper identification at any time.
- I certify that I am holder of legal title to the property described on application form BUA-4, or am authorized by the holder to give consent for the land application of biosolids, and that there are no restrictions to the granting of consent under this form.

<u>\0</u>_/<u>29</u>/<u>14</u> Date

In the event the owner of the beneficial use site changes, Form BUA-2 must be revised and resubmitted to Ohio EPA.


Form BUA-3

Beneficial Use Site Operator Consent for Beneficial Use

Exemption 6

Certification Statement

I agree to be responsible for complying with all applicable beneficial use requirements established in Chapter 3745-40 of the Ohio Administrative Code.

<u>/0 / 24 / 14</u> Date

in the event the operator of the beneficial use site changes, Form BUA-3 must be revised and resubmitted to Ohio EPA.

Beneficial User Information

Beneficial user:		
Contact person:		
Mailing address:		
City:	State:	Zip:
Telephone number:		

quasar **energy group** 7624 Riverview Road Cleveland, OH 44141

(216) 986-9999 www.quasarenergygroup.com

Division of Surface Water

Application for Authorization Class B Beneficial Use Sites

Form BUA-4 Page 1 of 2

Beneficial Use Site Information

	EPA Site I. EPA Use O	

Field site I.D.: MOQ-08-01				
Beneficial use site location: W of Ashley-We	estfield Rd., 0.2 miles S of Prospect Mt. Vernon Rd.			
County: Morrow	Township: Westfield			
Latitude: 40°25'27.91"N	ide: 40°25'27.91"N Longitude: 82°57'55.11"W			
Total acreage proposed for beneficial use: 4	9.9			
C-31-411/2-1/3-1/- E	Soil phosphorus (mg/kg): 39.5			
Soil pH (s.u.): 6.5	Bray Kurtz P1 ■			
	Diay Nuitz Fi			

Type of crops to be grown:

Bedrock depth (feet): >3ft

Crop Type	Expected Yield
Corn	185 bu
Soybeans	60 bu
Wheat	
Pasture	
Hay	
Other:	

Mehlich 3

Division of Surface Water

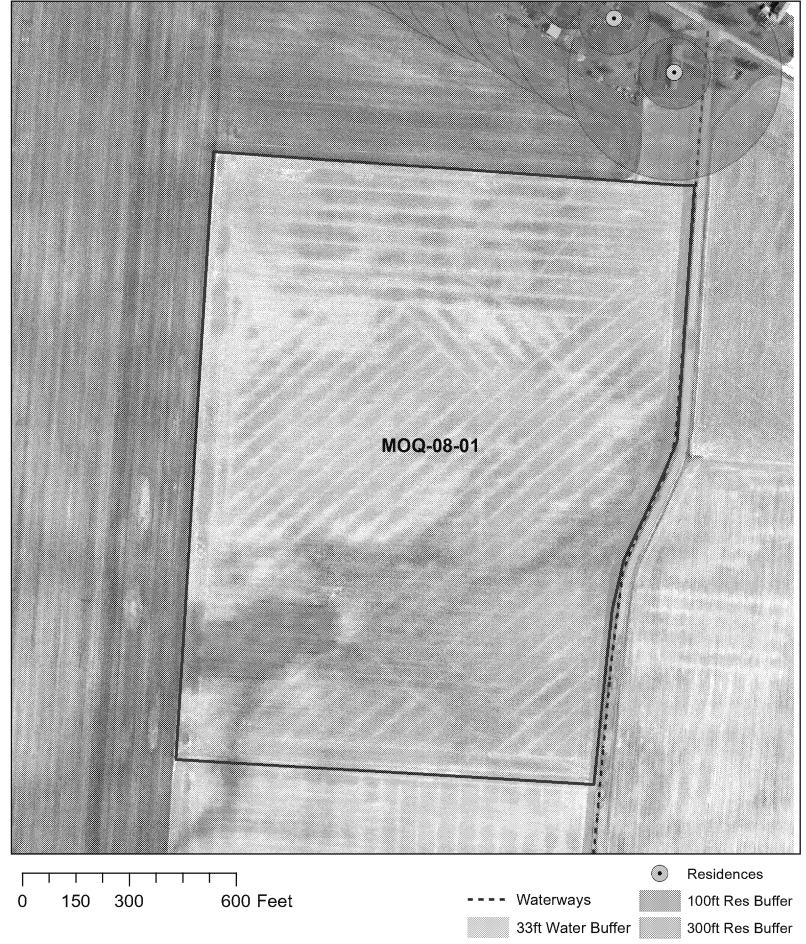
Application for Authorization Class B Beneficial Use Sites

Soil Types:		
Soil Unit Symbol	Soil Unit Name	Hydrologic Soil Group
Blg1A1	Blount silt loam, ground moraine, 0 to 2 percent slopes	D
Gwg1B1	Glynwood silt loam, ground moraine, 2 to 6 percent slopes	D
Pm	Pewamo silty clay loam	C/D
Are any endanger	ed species or endangered species habitats located on	the beneficial use site?
	□ Yes ■ No	
lf "Yes" is marked	, list the types of endangered species or endangered s	pecies habitat:
Have biosolids be	en beneficially used on the site since July 20, 1993?	
	☐ Yes ■ No	
If "Yes" is marked	I, list the biosolids generators and years beneficial use	occurred:
	Generator Year of Beneficial Use	
The application m	ust also include all of the following.	
Δ soil man	of the proposed beneficial use site.	
An aerial m	ap of the proposed beneficial use site that clearly iden	
beneficial :	use site from the nearest road and all applicable	isolation distances as

Ohio EPA Application for Authorization (06/11)

beneficial use site with all roads labeled.

established in Chapter 3745-40 of the Ohio Administrative Code.


A copy of the most recent soil test results identified in this form.

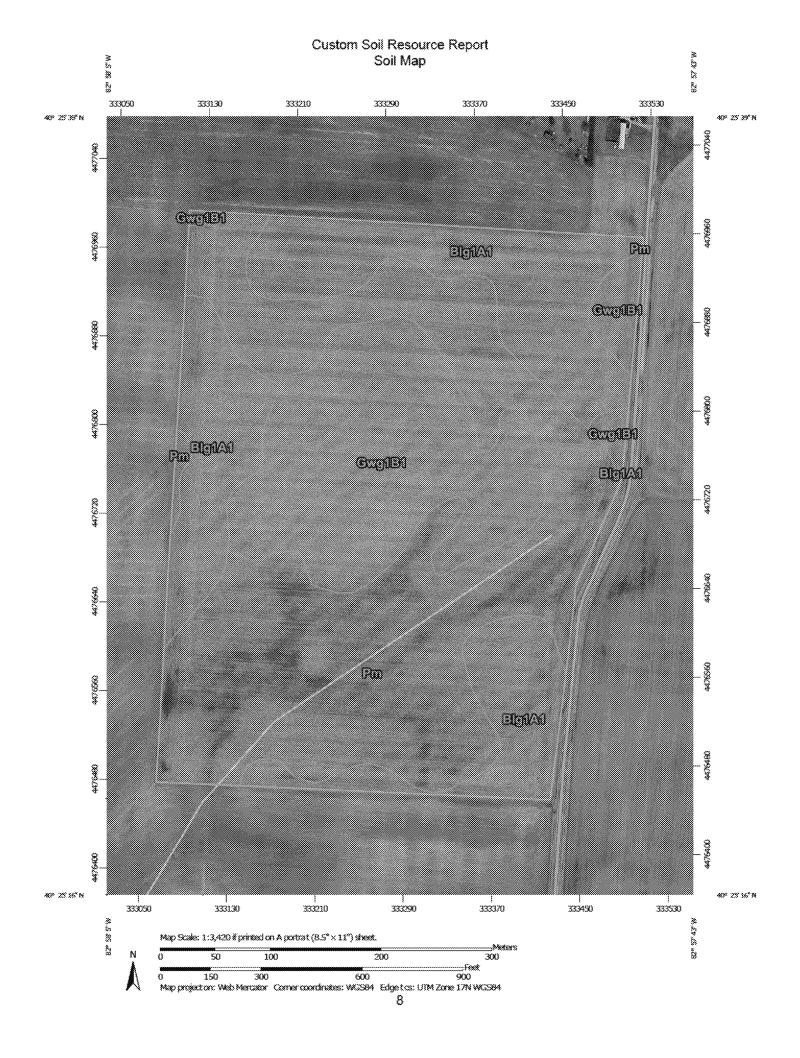
A vicinity road map at or near the township level that clearly identifies the proposed

Staley MOQ-08-01 Total Acreage: 49.9 acres

150

0

300


600 Feet

Staley MOQ-08-01 Total Acreage: 49.9 acres

5ft Contours

MAP LEGEND

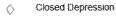
Area of Interest (AOI)

Area of Interest (AOI)

Soils

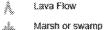
Soil Map Unit Potygons

Soil Map Unit Lines


Soil Map Unit Points

Special Point Features

Slowout


Clay Spot

👼 Gravetty Spot

saarsn or swam

Mine or Quarry
 Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot عَيْبَ

್ಲಿ Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area Stony Spot

Very Stony Spot

Wet Spot Other

Special Line Features

Streams and Canals

Water Features

Transportation

+++ Rails

Interstate Highways

US Routes

Major Roads Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Morrow County, Ohio Survey Area Data: Version 13, Sep 19, 2014

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 5, 2011—Mar 10, 2012

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Morrow County, Ohio (OH117)						
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
Blg1A1	Blount silt loam, ground moraine, 0 to 2 percent slopes	14.4	29.1%			
Gwg1B1	Glynwood silt loam, ground moraine, 2 to 6 percent slopes	12.2	24.7%			
Pm	Pewamo silty clay loam	22.8	46.2%			
Totals for Area of Interest		49.4	100.0%			

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If

Morrow County, Ohio

Blg1A1—Blount silt loam, ground moraine, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2skcv Elevation: 700 to 1,300 feet

Mean annual precipitation: 34 to 42 inches Mean annual air temperature: 48 to 54 degrees F

Frost-free period: 140 to 180 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Blount, ground moraine, and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blount, Ground Moraine

Setting

Landform: Ground moraines on till plains
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Wisconsin till derived from limestone and shale

Typical profile

Ap - 0 to 10 inches: silt loam Bt - 10 to 33 inches: silty clay BC - 33 to 39 inches: clay loam Cd - 39 to 79 inches: clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: 31 to 54 inches to densic material

Natural drainage class: Somewhat poorly drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.20 in/hr)

Depth to water table: About 6 to 12 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 35 percent

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: D

Minor Components

Pewamo, ground moraine

Percent of map unit: 9 percent

Landform: Ground moraines on till plains
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope

Down-slope shape: Linear

Across-slope shape: Concave, linear

Glynwood, ground moraine

Percent of map unit: 6 percent

Landform: Ground moraines on till plains

Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Side slope, nose slope

Down-slope shape: Convex Across-slope shape: Linear

Gwg1B1—Glynwood silt loam, ground moraine, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2v4bl Elevation: 700 to 1,300 feet

Mean annual precipitation: 34 to 42 inches Mean annual air temperature: 48 to 54 degrees F

Frost-free period: 140 to 180 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Glynwood, ground moraine, and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Glynwood, Ground Moraine

Setting

Landform: Ground moraines on till plains

Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Nose slope, side slope

Down-slope shape: Convex, linear Across-slope shape: Linear, convex

Parent material: Wisconsin till derived from limestone and shale

Typical profile

Ap - 0 to 9 inches: silt loam Bt - 9 to 29 inches: clay

BC - 29 to 34 inches: clay loam Cd - 34 to 79 inches: clay loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: 28 to 45 inches to densic material

Natural drainage class: Moderately well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.20 in/hr)

Depth to water table: About 12 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 35 percent

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm) Available water storage in profile: Low (about 5.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: D

Minor Components

Blount, ground moraine

Percent of map unit: 9 percent

Landform: Ground moraines on till plains

Landform position (two-dimensional): Summit, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Linear, convex Across-slope shape: Linear

Pewamo

Percent of map unit: 6 percent

Landform: Ground moraines on till plains
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Concave

Pm—Pewamo silty clay loam

Map Unit Setting

National map unit symbol: 5q8m Elevation: 600 to 1,400 feet

Mean annual precipitation: 29 to 42 inches Mean annual air temperature: 46 to 55 degrees F

Frost-free period: 130 to 180 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Pewamo and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pewamo

Setting

Landform: Depressions, drainageways

Parent material: Till

Typical profile

H1 - 0 to 15 inches: silty clay loam H2 - 15 to 66 inches: silty clay loam H3 - 66 to 80 inches: clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Very poorly drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: Frequent

Calcium carbonate, maximum in profile: 30 percent Available water storage in profile: High (about 10.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: C/D

Minor Components

Sloan

Percent of map unit: 3 percent Landform: Flood plains

Condit

Percent of map unit: 3 percent

Landform: Depressions on ground moraines

Down-slope shape: Concave Across-slope shape: Concave

Carlisle

Percent of map unit: 3 percent Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave

Bennington

Percent of map unit: 3 percent

Landform: Rises on ground moraines, rises on end moraines, flats on ground

moraines, flats on end moraines

Landform position (two-dimensional): Summit, shoulder

Down-slope shape: Linear Across-slope shape: Linear

Blount

Percent of map unit: 3 percent

Landform: Flats on ground moraines, flats on end moraines, rises on ground

moraines, rises on end moraines

Landform position (two-dimensional): Summit, shoulder

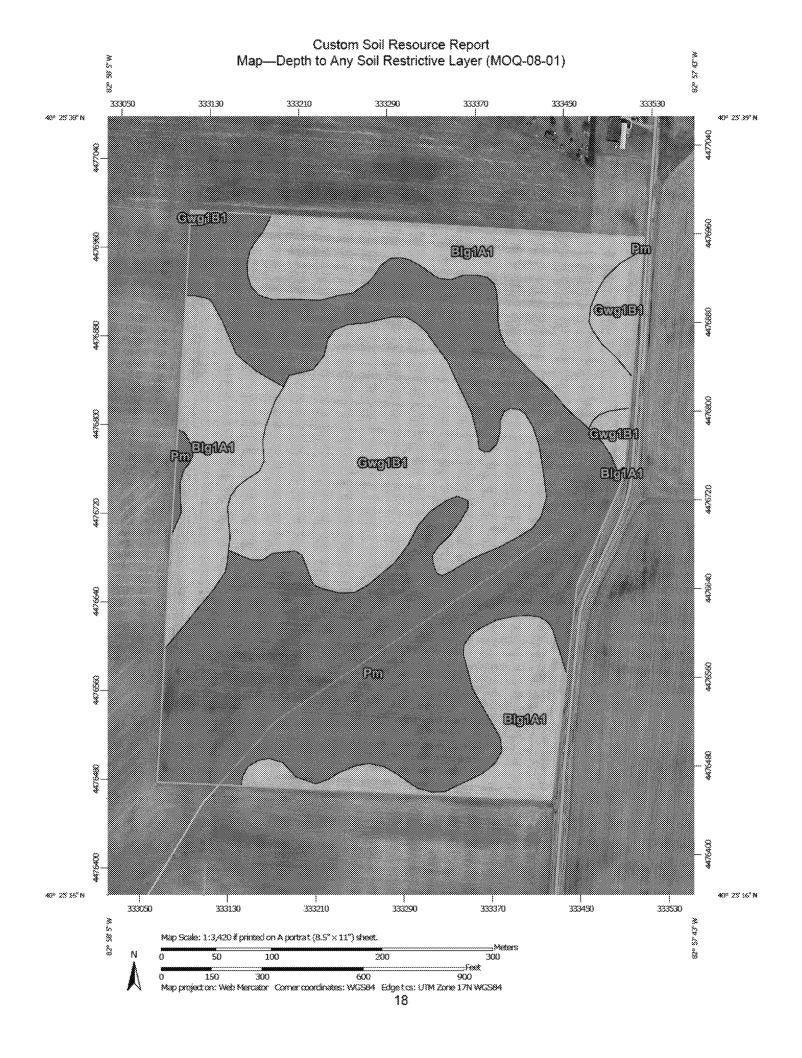
Down-slope shape: Linear Across-slope shape: Linear

More sand and less clay in the subsoil

Percent of map unit:

Landform: Depressions, drainageways

Thinner or lighter colored surface layer


Percent of map unit:

Landform: Depressions, drainageways

Slopes of 3 or 4 percent

Percent of map unit:

Landform: Depressions, drainageways

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:15,800. Area of Interest (AOI) Not rated or not available Area of Interest (AOI) Water Features Warning: Soil Map may not be valid at this scale. Soils Streams and Canals Soil Rating Polygons Transportation Enlargement of maps beyond the scale of mapping can cause 0 - 25 Raiss پښه misunderstanding of the detail of mapping and accuracy of soil line 25 - 50placement. The maps do not show the small areas of contrasting Interstate Highways soils that could have been shown at a more detailed scale. 50 - 100 **US Routes** 100 - 150 Major Roads Please rely on the bar scale on each map sheet for map 150 - 200 measurements. Local Roads 4000046 > 200 Background Source of Map: Natural Resources Conservation Service Not rated or not available Aerial Photography Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857) Soil Rating Lines 0 - 25Maps from the Web Soil Survey are based on the Web Mercator 25 - 50 projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the 50 - 100 Albers equal-area conic projection, should be used if more accurate 100 - 150 calculations of distance or area are required. 150 - 200 This product is generated from the USDA-NRCS certified data as of > 200 the version date(s) listed below. Not rated or not available Soil Survey Area: Morrow County, Ohio Soil Rating Points Survey Area Data: Version 13, Sep 19, 2014 0 - 25 25 - 50 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. 50 - 100 100 - 150 Date(s) aerial images were photographed: Oct 5, 2011—Mar 10, m 2012 150 - 200 > 200 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Depth to Any Soil Restrictive Layer (MOQ-08-01)

Dehii	to Any Soil Restrictive Laye	a— Summary by Map Onit	— Morrow County, Onlo (Jility
Map unit symbol	Map unit name	Rating (centimeters)	Acres in AOI	Percent of AOI
Blg1A1	Blount silt loam, ground moraine, 0 to 2 percent slopes	99	14.4	29.1%
Gwg1B1	Glynwood silt loam, ground moraine, 2 to 6 percent slopes	86	12.2	24.7%
Pm	Pewamo silty clay loam	>200	22.8	46.2%
Totals for Area of Inter	est		49.4	100.0%

Rating Options—Depth to Any Soil Restrictive Layer (MOQ-08-01)

Units of Measure: centimeters

Aggregation Method: Dominant Component Component Percent Cutoff: None Specified

Tie-break Rule: Lower Interpret Nulls as Zero: No

Hydrologic Soil Group (MOQ-08-01)

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

MAP LEGEND **MAP INFORMATION** The soil surveys that comprise your AOI were mapped at 1:15,800. Area of Interest (AOI) C Area of Interest (AOI) C/D Warning: Soil Map may not be valid at this scale. Soils D Soil Rating Polygons Not rated or not available Enlargement of maps beyond the scale of mapping can cause ,A, misunderstanding of the detail of mapping and accuracy of soil line Water Features A/D placement. The maps do not show the small areas of contrasting Streams and Canals soils that could have been shown at a more detailed scale 8 Transportation 8/0 Rails *** Please rely on the bar scale on each map sheet for map C measurements. Interstate Highways C/D **US Routes** 488644F Source of Map: Natural Resources Conservation Service 0 Major Roads Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857) Not rated or not available Local Roads Soil Rating Lines Background Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Aerial Photography distance and area. A projection that preserves area, such as the A/D Albers equal-area conic projection, should be used if more accurate 8 calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Morrow County, Ohio Survey Area Data: Version 13, Sep 19, 2014 Not rated or not available Soil map units are labeled (as space allows) for map scales 1:50,000 Soil Rating Points or larger. A Date(s) aerial images were photographed: Oct 5, 2011—Mar 10, A/D 2012 8/0 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Hydrologic Soil Group (MOQ-08-01)

Hydrologic Soil Group— Summary by Map Unit — Morrow County, Ohio (OH117)							
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI			
Blg1A1	Blount silt loam, ground moraine, 0 to 2 percent slopes	D	14.4	29.1%			
Gwg1B1	Glynwood silt loam, ground moraine, 2 to 6 percent slopes	D	12.2	24.7%			
Pm	Pewamo silty clay loam	C/D	22.8	46.2%			
Totals for Area of Inter	est	,	49.4	100.0%			

Rating Options—Hydrologic Soil Group (MOQ-08-01)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Soil Analysis Report

JASON STALEY

CENTRAL OHIO FARMERS COOP WALDO B 420 W MAIN ST

00111498 HEATHER GOODMAN

Received: 18-Oct-12

Reported: 22-Oct-14

Lab Number	575971	575972	575973	578974	575975	575976	575977	575978	575979	575980	575981	575982
Field	50	50	50	50	50	50	50	50	50	50	50	50
Sample No.	1	2	3	4	5	6	7	8	9	10	11	12
C.B.C.	19.4	16.9	13.5	11.5	17.0	15.4	12.1	16.1	11.0	9.9	11.3	12.0
Org Matter	4.8	5.3	3.9	2.8	4.0	4.3	3.0	3.7	2.8	2.4	2.7	2.9
Scil pH	6.2	6.5	6.4	6.5	6.2	6.5	6.5	6.4	8.6	6.4	5.6	6.2
Lime Index	66	68	68	69	67	68	69	68	69	89	69	68
F lbs/ac	136	153	187	107	110	109	101	47	41	45	55	56
K lbs/ac	477	582	506	266	410	365	254	281	168	154	261	279
Ca lbs/ac	4268	4226	3206	3029	4075	3880	3214	4128	2909	2583	2988	3120
Mg lbs/ac	810	763	591	573	653	594	614	737	564	484	560	354
SO4S lbs/ac												
B lbs/ac												
Cu lbs/ac												
Mn lbs/ac								· · · · · · · · · · · · · · · · · · ·				
Zn lbs/ac												
Ca Sat'n.	55 %	63 %	59 *	66 %	60 %	63 %	56 %	64 %	66 %	85 %	66 k	65 %
Mg Sat'n.	17 %	19 %	18 *	21 %	16 %	19 %	21 %	19 %	21 %	20 %	20 🛊	12 *
K Sat'n.	3 %	4 %	5 %	3 %	3 %	3 %	3 %	2 %	2 %	2 %	3 \$	3 🐐
Base Sat'n.	75 %	86 %	82 %	89 %	79 %	85 %	90 %	85 %	89 %	87 %	90 %	80 %
Ca/Mg	3.2	3.3	3.3	3.2	3.7	3,4	3.1	3.4	3.1	3.2	3.2	5.3
Ng/K	5.5	4.3	3.8	7.0	5.2	6.2	7.9	8.6	10.9	9.6	7.0	4.1
Na lbs/ac				······································								
Pe												
SS mS/cm												
lbs/ac												
NC3N pps									····			
NH4-N pps												
Pct. Sand												
Pct. Silt												
Pct. Clay												
Texture												

Soil Analysis Report

JASON STALEY

CENTRAL OHIO FARMERS COOP WALDO B 420 W MAIN ST

Farm BARTLETT

Received: 18-Oct-12

Reported: 22-Oct-14

AATTIAA HEWHILM AAANIMA	00111498	HEATHER	GOODMAN
-------------------------	----------	----------------	---------

Lab Number	575945	575946	575947	575948	575949	575950	575951	575952
Field	50	50	50	50	50	50	50	50
Sample No.	13	14	15	16	17	18	19	20
C.8.C.	11.0	14.2	18.1	16.5	19.4	15.4	15.8	13.2
Org Matter	2.3	4.4	5.0	4.4	5.2	4.2	3.8	2.2
Soil pH	6.6	6.7	6.6	6.5	8.6	6.5	8.7	6.9
Lime Index	70	69	68	58	68	68	69	70
P lbs/ac	38	35	57	42	48	67	79	67
K lbs/ac	213	294	417	295	309	311	310	230
Ca lbs/ac	3248	3895	4637	4166	4765	3796	4765	4269
Mg lbs/ac	632	708	877	800	895	768	805	542
SO4S lbs/ac								
B lbs/ac								
Cu lbs/ac								
Mn lbs/ac								
Zn lbs/ac								
Ca Sat'n.	74 %	59 k	64 %	63 🔻	65 %	62 %	71 %	81 %
Mg Satin.	24 %	21 %	20 %	20 %	20 %	21 %	20 %	17 %
K Sat'n.	3 1	3 %	3 %	2 %	2 %	3 %	2 %	2 %
Base Sat'n.	100 %	92 %	97 %	95 %	87 %	85 %	93 %	100 %
Ca/Mg	3.1	3.3	3.2	3.1	3.2	3.0	3.6	4.7
Mg/K	9.7	7.9	8.9	8.8	9.4	8.1	8.5	7.7
Na lbs/ac								
Fe								
SS mS/cm	***************************************							
lbs/ac								
NO3N ppm								
NH4-N ppm								
Pct. Sand								
Pot. Silt							·····	
Pct. Clay								
Texture								

Division of Surface Water

Application for Authorization Class B Beneficial Use Sites

Form BUA-4 Page 1 of 2

Beneficial Use Site Information

Ohio EPA Site I.D.

(Ohio EPA Use Only)	
Field site I.D.: MOQ-08-02	
Beneficial use site location: 1 mi W of Worthingt	on-New Haven Rd. on N side of Prospect Mt.

Vernon Rd.

County: Morrow

Latitude: 40°25'22.23"N

Longitude: 82°52'21.31"W

, o.m., no., oog o p.	oposed for beneficial use: 14		
Soil pH (s.u.): 6.6 Bedrock depth (feet): >3ft		Soil phosphorus (mg	/kg): 24.4
		Bray Kurtz P1 Mehlich 3	
Type of crops to	be grown:		
	Crop Type	Expected Yield	
	Corn	185 bu	
	Soybeans	60 bu	
	Wheat		
	Pasture		
	Hay		
	Other:		

Division of Surface Water

Application for Authorization Class B Beneficial Use Sites

Soil Types:		
Soil Unit Symbol	Soil Unit Name	Hydrologic Soil Group
Ble1A1	Blount silt loam, end moraine, 0 to 2 perce slopes	ent D
Ble1B1	Blount silt loam, end moraine, 2 to 4 perce slopes	ent D
Gwe5B2	Glynwood clay loam, end moraine, 2 to 6 slopes, eroded	percent D
Pm	Pewamo silty clay loam	C/D
	☐ Yes ■ d, list the types of endangered species or end	
Have biosolids b	een beneficially used on the site since July 2	0, 1993?
	☐ Yes ■	No
lf "Yes" is marke	ed, list the biosolids generators and years ber	neficial use occurred:
	Generator Year Beneficia	

The application must also include all of the following.

- A soil map of the proposed beneficial use site.
- An aerial map of the proposed beneficial use site that clearly identifies the entrance of the beneficial use site from the nearest road and all applicable isolation distances as established in Chapter 3745-40 of the Ohio Administrative Code.
- A vicinity road map at or near the township level that clearly identifies the proposed beneficial use site with all roads labeled.
- A copy of the most recent soil test results identified in this form.

Staley MOQ-08-02 Total Acreage: 146.2 acres

1,200 Feet

0

300

600

100ft Res Buffer

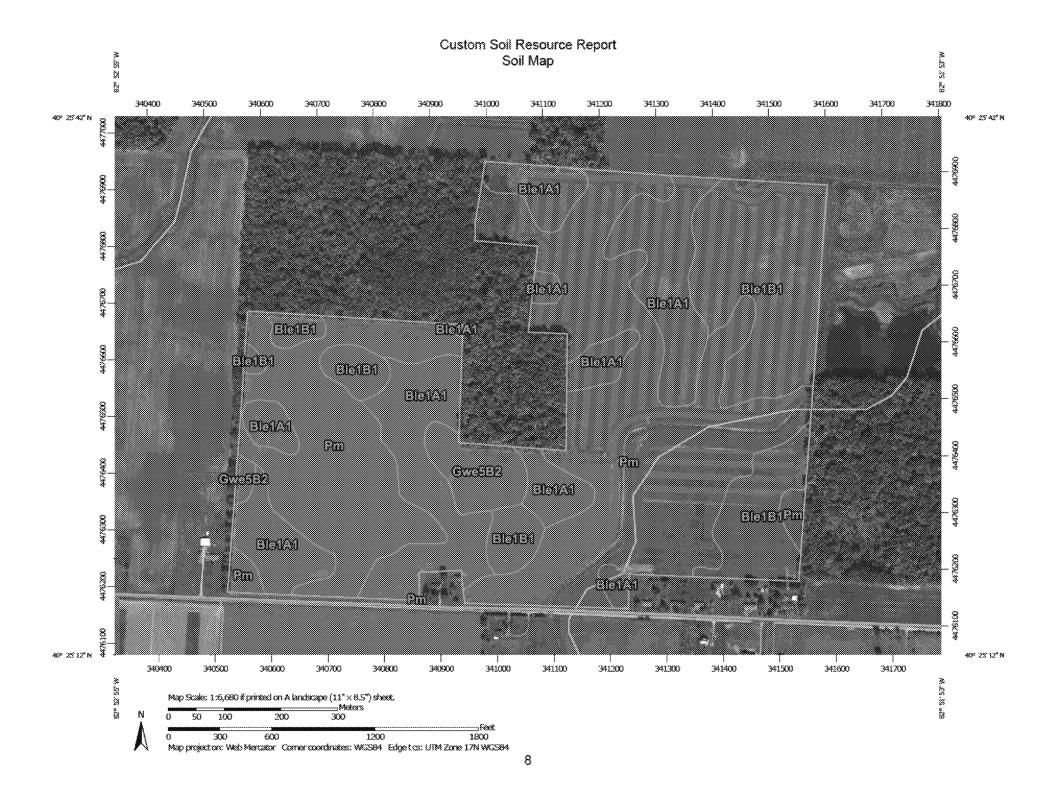
300ft Res Buffer

Waterways

33ft Water Buffer

300

600


1,200 Feet

Staley MOQ-08-02 Total Acreage: 146.2 acres

5ft Contours

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Slowout

Closed Depression

3 Gravelly Spot

Landfill

A Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

್ಲಿ Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area Stony Spot

Very Stony Spot

Wet Spot

Special Line Features

Water Features

Streams and Canais

Transportation

Rails

Interstate Highways

US Routes

Major Roads Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Morrow County, Ohio Survey Area Data: Version 13, Sep 19, 2014

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 5, 2011—Mar 10, 2012

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Morrow County, Ohio (OH117)				
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
Ble1A1	Blount silt loam, end moraine, 0 to 2 percent slopes	37.5	25.7%	
Ble1B1	Blount silt loam, end moraine, 2 to 4 percent slopes	31.7	21.7%	
Gwe5B2	Glynwood clay loam, end moraine, 2 to 6 percent slopes, eroded	5.2	3.6%	
Pm	Pewamo silty clay loam	71.7	49.1%	
Totals for Area of Interest		146.1	100.0%	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic

Morrow County, Ohio

Ble1A1—Blount silt loam, end moraine, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2s1j4 Elevation: 700 to 1,300 feet

Mean annual precipitation: 34 to 42 inches Mean annual air temperature: 48 to 54 degrees F

Frost-free period: 140 to 180 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Blount, end moraine, and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blount, End Moraine

Setting

Landform: End moraines on till plains

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Wisconsin till derived from limestone and shale

Typical profile

Ap - 0 to 10 inches: silt loam Bt - 10 to 33 inches: silty clay BC - 33 to 39 inches: clay loam Cd - 39 to 79 inches: clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: 30 to 60 inches to densic material

Natural drainage class: Somewhat poorly drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.20 in/hr)

Depth to water table: About 6 to 12 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 35 percent

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: D

Minor Components

Glynwood, end moraine

Percent of map unit: 9 percent

Landform: End moraines on till plains

Landform position (two-dimensional): Backslope, summit Landform position (three-dimensional): Side slope, crest

Down-slope shape: Convex Across-slope shape: Convex

Pewamo, end moraine

Percent of map unit: 6 percent Landform: End moraines on till plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear, concave Across-slope shape: Linear, concave

Ble1B1—Blount silt loam, end moraine, 2 to 4 percent slopes

Map Unit Setting

National map unit symbol: 2s1j5 Elevation: 700 to 1,300 feet

Mean annual precipitation: 34 to 42 inches Mean annual air temperature: 48 to 54 degrees F

Frost-free period: 140 to 180 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Blount, end moraine, and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blount, End Moraine

Setting

Landform: End moraines on till plains

Landform position (two-dimensional): Footslope, backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Wisconsin till derived from limestone and shale

Typical profile

Ap - 0 to 9 inches: silt loam
Bt - 9 to 32 inches: silty clay
BC - 32 to 37 inches: clay loam
Cd - 37 to 79 inches: clay loam

Properties and qualities

Slope: 2 to 4 percent

Depth to restrictive feature: 30 to 56 inches to densic material

Natural drainage class: Somewhat poorly drained

Runoff class: High

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.20 in/hr)

Depth to water table: About 6 to 12 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 35 percent

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Low (about 5.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: D

Minor Components

Glynwood, end moraine

Percent of map unit: 9 percent Landform: End moraines on till plains

Landform position (two-dimensional): Backslope, summit Landform position (three-dimensional): Side slope, crest

Down-slope shape: Convex Across-slope shape: Convex

Pewamo, end moraine

Percent of map unit: 6 percent Landform: End moraines on till plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Gwe5B2—Glynwood clay loam, end moraine, 2 to 6 percent slopes, eroded

Map Unit Setting

National map unit symbol: 2t6lj Elevation: 720 to 1,320 feet

Mean annual precipitation: 34 to 42 inches Mean annual air temperature: 48 to 54 degrees F

Frost-free period: 140 to 180 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Glynwood, end moraine, and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Glynwood, End Moraine

Setting

Landform: End moraines on till plains

Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Side slope, crest

Down-slope shape: Convex

Across-slope shape: Linear, convex

Parent material: Wisconsin till derived from limestone and shale

Typical profile

Ap - 0 to 7 inches: clay loam

Bt - 7 to 26 inches: clay

BC - 26 to 30 inches: clay loam

Cd - 30 to 79 inches: clay loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: 24 to 42 inches to densic material

Natural drainage class: Moderately well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.20 in/hr)

Depth to water table: About 12 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 35 percent

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: D

Minor Components

Blount, end moraine

Percent of map unit: 9 percent

Landform: End moraines on till plains

Landform position (two-dimensional): Footslope, backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Pewamo

Percent of map unit: 6 percent

Landform: End moraines on till plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Concave

Pm—Pewamo silty clay loam

Map Unit Setting

National map unit symbol: 5q8m Elevation: 600 to 1,400 feet

Mean annual precipitation: 29 to 42 inches Mean annual air temperature: 46 to 55 degrees F

Frost-free period: 130 to 180 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Pewamo and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pewamo

Setting

Landform: Depressions, drainageways

Parent material: Till

Typical profile

H1 - 0 to 15 inches: silty clay loam H2 - 15 to 66 inches: silty clay loam H3 - 66 to 80 inches: clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Very poorly drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: Frequent

Calcium carbonate, maximum in profile: 30 percent Available water storage in profile: High (about 10.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: C/D

Minor Components

Sloan

Percent of map unit: 3 percent Landform: Flood plains

Custom Soil Resource Report

Condit

Percent of map unit: 3 percent

Landform: Depressions on ground moraines

Down-slope shape: Concave Across-slope shape: Concave

Carlisle

Percent of map unit: 3 percent Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave

Bennington

Percent of map unit: 3 percent

Landform: Rises on ground moraines, rises on end moraines, flats on ground

moraines, flats on end moraines

Landform position (two-dimensional): Summit, shoulder

Down-slope shape: Linear Across-slope shape: Linear

Blount

Percent of map unit: 3 percent

Landform: Flats on ground moraines, flats on end moraines, rises on ground

moraines, rises on end moraines

Landform position (two-dimensional): Summit, shoulder

Down-slope shape: Linear Across-slope shape: Linear

More sand and less clay in the subsoil

Percent of map unit:

Landform: Depressions, drainageways

Thinner or lighter colored surface layer

Percent of map unit:

Landform: Depressions, drainageways

Slopes of 3 or 4 percent

Percent of map unit:

Landform: Depressions, drainageways

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:15,800. Area of Interest (AOI) Not rated or not available Area of Interest (AOI) Water Features Warning: Soil Map may not be valid at this scale. Soils Streams and Canals Soil Rating Polygons Transportation Enlargement of maps beyond the scale of mapping can cause 0 - 25 Raiss پښه misunderstanding of the detail of mapping and accuracy of soil line 25 - 50placement. The maps do not show the small areas of contrasting Interstate Highways soils that could have been shown at a more detailed scale. 50 - 100 **US Routes** 100 - 150 Major Roads Please rely on the bar scale on each map sheet for map 150 - 200 measurements. Local Roads 4000046 > 200 Background Source of Map: Natural Resources Conservation Service Not rated or not available Aerial Photography Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857) Soil Rating Lines 0 - 25Maps from the Web Soil Survey are based on the Web Mercator 25 - 50 projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the 50 - 100 Albers equal-area conic projection, should be used if more accurate 100 - 150 calculations of distance or area are required. 150 - 200 This product is generated from the USDA-NRCS certified data as of > 200 the version date(s) listed below. Not rated or not available Soil Survey Area: Morrow County, Ohio Soil Rating Points Survey Area Data: Version 13, Sep 19, 2014 0 - 25 25 - 50 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. 50 - 100 100 - 150 Date(s) aerial images were photographed: Oct 5, 2011—Mar 10, m 2012 150 - 200 > 200 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Depth to Any Soil Restrictive Layer (MOQ-08-02)

Depth	to Any Soil Restrictive Laye	er— Summary by Map Unit	— Morrow County, Onio (OH117)
Map unit symbol	Map unit name	Rating (centimeters)	Acres in AOI	Percent of AOI
Ble1A1	Blount silt loam, end moraine, 0 to 2 percent slopes	99	37.5	25.7%
Ble1B1	Blount silt loam, end moraine, 2 to 4 percent slopes	94	31.7	21.7%
Gwe5B2	Glynwood clay loam, end moraine, 2 to 6 percent slopes, eroded	76	5.2	3.6%
Pm	Pewamo silty clay loam	>200	71.7	49.1%
Totals for Area of Inter	est	A	146.1	100.0%

Rating Options—Depth to Any Soil Restrictive Layer (MOQ-08-02)

Units of Measure: centimeters

Aggregation Method: Dominant Component Component Percent Cutoff: None Specified

Tie-break Rule: Lower Interpret Nulls as Zero: No

Hydrologic Soil Group (MOQ-08-02)

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils

MAP LEGEND **MAP INFORMATION** The soil surveys that comprise your AOI were mapped at 1:15,800. Area of Interest (AOI) C Area of Interest (AOI) C/D Warning: Soil Map may not be valid at this scale. Soils D Soil Rating Polygons Not rated or not available Enlargement of maps beyond the scale of mapping can cause ,A, misunderstanding of the detail of mapping and accuracy of soil line Water Features A/D placement. The maps do not show the small areas of contrasting Streams and Canals soils that could have been shown at a more detailed scale 8 Transportation 8/0 Rails *** Please rely on the bar scale on each map sheet for map O measurements. Interstate Highways C/D **US Routes** 488644F Source of Map: Natural Resources Conservation Service 0 Major Roads Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857) Not rated or not available Local Roads Soil Rating Lines Background Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Aerial Photography distance and area. A projection that preserves area, such as the A/D Albers equal-area conic projection, should be used if more accurate 8 calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Morrow County, Ohio Survey Area Data: Version 13, Sep 19, 2014 Not rated or not available Soil map units are labeled (as space allows) for map scales 1:50,000 Soil Rating Points or larger. A A/D Date(s) aerial images were photographed: Oct 5, 2011—Mar 10, 2012 8/0 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Hydrologic Soil Group (MOQ-08-02)

	Hydrologic Soli Group— Su	immary by wap Unit — i	Morrow County, Ohio (OH117)
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Ble1A1	Blount silt loam, end moraine, 0 to 2 percent slopes	D	37.5	25.7%
Ble1B1	Blount silt loam, end moraine, 2 to 4 percent slopes	D	31.7	21.7%
Gwe5B2	Glynwood clay loam, end moraine, 2 to 6 percent slopes, eroded	D	5.2	3.6%
Pm	Pewamo silty clay loam	C/D	71.7	49.1%
Totals for Area of Inter	est est	A	146.1	100.0%

Rating Options—Hydrologic Soil Group (MOQ-08-02)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

JASON STALEY

CENTRAL OHIO FARMERS COOP WALDO B 420 W MAIN ST

00111498 TOM CRAWFORD

Farm

Received: 20-Nov-13

Lab Number	309891	309892	:	309894		309896	3	309898			309901	309902
:	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK			
Sample No.	1	2	3	4	5	6	7	8	9	10	11	12
C.E.C.	11.8	15.6	13.9	14.5	11.8	11.0	20.1	16.7	16.7	14.2	13,7	12.9
Org Matter	2.6	2.8	3.3	2.3	2.7	2.5	4.0	4.3	3.9	2.9	3.5	3.1
Soil pH	6.4	6.7	6.6	7.2	7.0	7.0	6.3	6.7	6.5	7.1	6.8	6.9
Lime Index	69	70	69	70	70	70	67	69	68	70	70	70
P lbs/ac	40	59	74	27	30	21	63	42	55	31	30	33
K lbs/ac	219	290	263	198	206	200	335	317	258	224	226	255
Ca lbs/ac	3047	4688	3891	4800	3666	3447	5071	4657	4066	4220	4020	3771
Mg lbs/ac	650	849	\$30	539	585	815	829	841	914	816	807	771
S04S lbs/ac												
B lbs/ac						***************************************						
Cu lbs/ac												***************************************
Mn lbs/ac												
En lbs/ac												
Ca Sat'n.	65 %	75 ≹	70 %	83 %	78 %	78 %	63 %	70 %	51 %	74 %	73 %	73 %
Mg Sat'n.	23 \$	22 %	19 %	15 %	20 %	19 %	17 %	21 %	23 %	24 %	24 %	25 %
K Sat'n.	2 %	2 *	2 %	2 %	2 %	2 %	2 %	2 \$	2 %	2 %	2 %	3 %
Base Sat'n.	9C %	100 %	81 %	100 %	100 %	100 %	82 %	93 %	85 %	100 %	100 %	100 %
Ca/Mg	2.8	3.3	3.7	5,3	3.8	4,0	3.7	3.3	2.7	3.1	3.0	2.9
Mg/K	9,7	9.5	7.8	8.9	9.3	8,4	8.1	8.6	11.5	11.9	11.6	9.9
Na lbs/ac							6					
Fe							0					
SS mS/cm												
lbs/ac												
NO3N ppm											•••	***************************************
NH4-N ppm												
Pct. Sand							•	***************************************				
Pct. Silt												
Pct. Clay												
Texture												

JASON STALEY

CENTRAL OHIO FARMERS COOP WALDO B 420 W MAIN ST

00111498 TOM CRAWFORD

Farm

Received: 20-Nov-13

Lab Number	309903				309907	309908	309909		309911	309912	
Field	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK
Sample No.	13	14	18	16	17	18	19	20	21	22	23
C.8.C.	13.0	16.7	12.3	13.5	11.2	9.6	12.7	18.3	10.0	12.4	15.7
Org Matter	3.1	4.0	3,8	3.8	3.C	2.5	3.4	3.8	2.1	2.4	3.8
Soil pH	7.0	6.5	5.5	6.9	7.2	6.7	6.7	€.7	6.4	6.2	7,1
Lime Index	70	68	69	70	70	70	70	59	69	68	70
F lbs/ac	25	66	34	47	31	31	48	49	51	62	110
K lbs/ac	212	274	236	308	233	214	242	321	287	340	387
Ca lbs/ac	3998	4387	3320	4119	3322	2855	3920	S048	2527	2954	4607
Mg lbs/ac	571	732	514	584	641	522	830	986	511	518	884
SC4S lbs/ac						,,,,,					
B lbs/ac											
Cu lbs/ac											
Mn lbs/ac											
In lbs/ac							·		:		
Ca Sat'n.	77 %	66 %	68 %	76 %	74 %	. 74 %	77 %	69 %	63 %	60 %	73 %
Mg Sat'n.	21 %	18 %	21 %	21 %	24 %	22 %	20 %	22 %	21 %	17 %	23 %
K Sat'n.	2 %	2 %	3 %	3 %	3 %	3 \$	2 %	2 %	4 %	4 %	3 %
Base Sat'n.	100 %	86 %	91 %	100 %	100 %	100 %	100 %	93 %	88 %	8C %	100 %
Ca/Xg	3.6	3,6	3.2	3.6	3.1	3.3	3.7	3.1	3.0	3.4	3.1
Mg/K	10.3	8.7	8.5	7.2	9.0	8.0	8.5	10.0	5.8	5.0	7.4
Na lbs/ac							~~~~~				
Pe											
SS mS/cm											
lbs/sc											
NO3N ppm	·//·······										
NH4-N ppm											
Pct. Sand											
Pct. Silt						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Pct. Clay	***************************************						***************************************		HOOTE OF THE TOTAL		
Texture											

JASON STALEY

Farm

CENTRAL OHIO FARMERS COOP WALDO B 420 W MAIN ST

00111498 TOM CRAWFORD

Received: 20-Nov-13

Lab Number	310042	310043	310044	310045	310046	310047	310048	310049	310050	310051	310052	310053
Field	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK
Sample No.	24	25	26	27	28	29	30	31	32	33	34	38
C.8.C.	10.3	13.2	11.2	12.5	17.7	12.0	15.7	15.4	18,8	16.1	14.0	14.6
Org Matter	2.6	2.4	2,2	2.2	3.6	2.3	3.7	3.2	4.5	3.8	5.0	3.6
Soil pH	7.0	6.5	8,1	6.9	6.0	6.5	6.5	6.0	6.8	6.1	6.5	6.3
Lime Index	70	69	68	70	66	69	68	SE	68	66	58	68
F lbs/ac	60	39	42	43	100	53	100	59	103	71	72	39
K lbs/ac	342	233	219	207	309	183	388	267	301	304	315	210
Ca lbs/ac	3026	3508	2343	3818	3788	3329	3840	3096	4781	3146	3394	3667
Mg lbs/ac	563	707	543	645	740	539	782	607	981	751	666	683
9045 lbs/ac												
B lbs/ac												
Cu lbs/ac												
Mn lbs/ac												
Zn lbs/ac									,			
Ca Sat'n.	73 %	86 %	52 %	76 %	54 %	69 %	51 %	50 %	64 %	49 %	61 %	53 %
Mg Sat'n.	23 %	22 %	24 %	21 %	17 %	19 %	21 %	16 %	22 %	19 %	20 %	19 %
K Sat'n.	4 \$	2 %	3 %	2 %	2 %	2 %	3 %	2 %	2 %	2 %	3 %	2 %
Base Sat'n.	100 %	91 %	78 %	100 *	73 %	90 %	85 %	69 %	87 %	71 %	83 %	84 %
Ca/Mg	3.2	3.0	2.2	3.6	3.1	3.7	2.9	3.1	2.9	2.5	3.1	3.2
Mg/K	5.4	9.9	9.6	10.2	7.8	9.6	6.8	7.4	10.6	8.1	6.9	10.6
Na lbs/ac												
Fe												
SS mS/cm												
lbs/ac												
NO3N ppm												
NH4-N ppm												
Pct. Sand					•							
Pot. Silt												
Pct. Clay									***************************************	*************************************	A4000 1000 1000 1000 1000 1000 1000 1000	
Texture												

JASON STALEY

Farm

CENTRAL OHIO FARMERS COOP WALDO B 420 W MAIN ST

00111498 TOM CRAWFORD

Received: 20-Nov-13 Reported: 22-Oct-14

Lab Number	310068		:	310071	310072			310075			310078
Field	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK	SALLY COOK
Sample No.	36	37	38	39	40	41	42	43	44	45	46
C.B.C.	17.5	17.9	14.9	11,9	11.7	13.2	14.8	11.4	9.6	10.6	12.3
Org Matter	3.9	4.6	3.0	2.3	2.9	2.7	2.8	2.3	2.3	2.1	2.8
Soil pH	7.1	6.9	6.4	6.5	8.5	6.2	8.9	6.3	6.4	8.5	7.0
Lime Index	70	70	68	69	69	68	66	68	89	89	70
P lbs/ac	38	104	60	26	49	57	59	48	28	25	29
K lbs/ac	230	442	351	195	231	242	245	191	172	146	234
Ca lbs/ac	5249	5152	3501	3229	2978	3008	2792	2593	2489	2826	3526
Mg lbs/ac	1010	1087	751	873	680	711	645	552	476	531	764
SO4S lbs/ac											
B lbs/ac											
Cu lbs/ac								,	***************************************		
Mn lbs/ac											
Zn lbs/ac											
Ca Sat'n.	75 %	72 🛊	60 k	68 %	64 %	57 %	47 %	57 🗞	65 %	67 %	72 %
Mg Sat'n.	24 %	25 %	21 %	20 %	24 %	23 %	18 %	20 %	20 %	21 %	28 %
K Sat'n.	2 %	3 %	3 %	2 %	3 %	2 %	2 %	2 %	2 %	2 %	2 %
Sase Sat'n.	100 %	100 *	84 %	90 %	90 %	82 %	67 %	79 %	88 %	89 %	100 %
Ca/Mg	3.1	2.8	2.9	3.4	2.6	2.5	2.6	2.8	3.1	3.2	2.8
Mg/K	14.3	8.0	7.0	9.6	9.6	9.6	8.6	9.4	9.0	11.9	20.6
Na lbs/ac							:	***************************************			
Fe							<u>.</u>				
SS ms/cm											
lbs/ac											
NO3N ppm			***************************************								
NH4-N ppm											
Pct. Sand	***************************************		•								
Pot. Silt				:							
Pct. Clay					Y	***************************************					
Texture											

JASON STALEY

CENTRAL OHIO FARMERS COOP WALDO B

00111498 TOM CRAWFORD

Farm

Received: 20-Nov-13

Lab Number	310109	310110						
\$			SALLY COOK					:
Sample No.	47	48	49	50	51	52	53	54
C.B.C.	10.5	11.6	9.3	11.9	12.7	11.4	10.6	10.1
Org Matter	2.4	3.4	2.5	2.4	2.7	2,3	2.1	1.9
Soil pH	8.5	8.8	6.6	6.8	6.6	6,8	6.4	6.6
Lime Index	69	70	70	69	69	70	69	70
P lbs/ac	31	53	42	34	37	36	29	16
K lbs/ac	194	307	249	245	239	202	151	206
Ca lbs/ac	2542	3279	2537	2977	3277	3320	3052	3010
Mg lbs/ac	673	723	653	714	723	684	378	568
\$048 lbs/ac								
B lbs/ac					:			
Cu lbs/ac					***************************************			
Mn lbs/ac								
Zn lbs/ac								
Ca Sat'n.	60 %	71 %	68 %	63 %	65 %	73 %	72 %	75 %
Mg Sat'n.	26 %	26 %	29 %	25 %	23 %	25 %	15 %	23 %
K Sat'n.	2 %	3 %	3 %	3 %	2 %	2 %	2 %	3 %
Base Sat'n.	88 \$	100 %	100 %	90 %	90 %	100 %	99 %	100 %
Ca/Mg	2.3	2.7	2.3	2.5	2.7	2.9	4.8	3.2
Mg/K	11.9	7.7	8.5	9.5	9.9	11.8	8.2	9.0
Na lbs/ac								
Fe								
SS mS/cm								
lbs/ac								
NO3N ppm								
NH4-N ppm							ý	
Pot. Sand							••••••	
Pct. Silt								
Pct. Clay				**************************			******************************	
Texture							:	

Division of Surface Water

Application for Authorization Class B Beneficial Use Sites

Form BUA-4 Page 1 of 2

Beneficial Use Site Information

-										•								•																		•								-					-				-	

Field site I.D.: MOQ-08-03	
Beneficial use site location: 1 mi W of Worthing Vernon Rd.	gton-New Haven Rd. on S side of Prospect Mt.
County: Morrow	Township: Peru
Latitude: 40°25'9.31"N	Longitude: 82°52'37.57"W
Total acreage proposed for beneficial use: 49.2	
Soil pH (s.u.): 6.6	Soil phosphorus (mg/kg): 25.8
Bedrock depth (feet): >3ft	Bray Kurtz P1 Manager Mehlich 3 Mehlich 3
Type of crops to be grown:	
	The state of the s

Crop Type	Expected Yield
Corn	185 bu
Soybeans	60 bu
Wheat	
Pasture	
Hay	
Other:	

Division of Surface Water

Application for Authorization Class B Beneficial Use Sites

Soil Types:		
Soil Unit Symbol	Soil Unit Name	Hydrologic Soil Group
Ble1A1	Blount silt loam, end moraine, 0 to 2 percent slopes	D
Ble1B1	Blount silt loam, end moraine, 2 to 4 percent slopes	D
Gwe5B2	Glynwood clay loam, end moraine, 2 to 6 percent slopes, eroded	D
Pm	Pewamo silty clay loam	C/D
Are any endanger	_ ed species or endangered species habitats located o	on the beneficial use site?
	☐ Yes ■ No	
	L 165 1 100	
If "Yes" is marked,	list the types of endangered species or endangered	species habitat:
Have biosolids bee	en beneficially used on the site since July 20, 1993?	
	☐ Yes No	
If "Yes" is marked	, list the biosolids generators and years beneficial us	e occurred:
	Generator Year of Beneficial Use	

The application must also include all of the following.

- A soil map of the proposed beneficial use site.
- An aerial map of the proposed beneficial use site that clearly identifies the entrance of the beneficial use site from the nearest road and all applicable isolation distances as established in Chapter 3745-40 of the Ohio Administrative Code.
- A vicinity road map at or near the township level that clearly identifies the proposed beneficial use site with all roads labeled.
- A copy of the most recent soil test results identified in this form.

150 300

600 Feet

Staley MOQ-08-03 Total Acreage: 49.2 acres

ED_014244A_00000186-00054

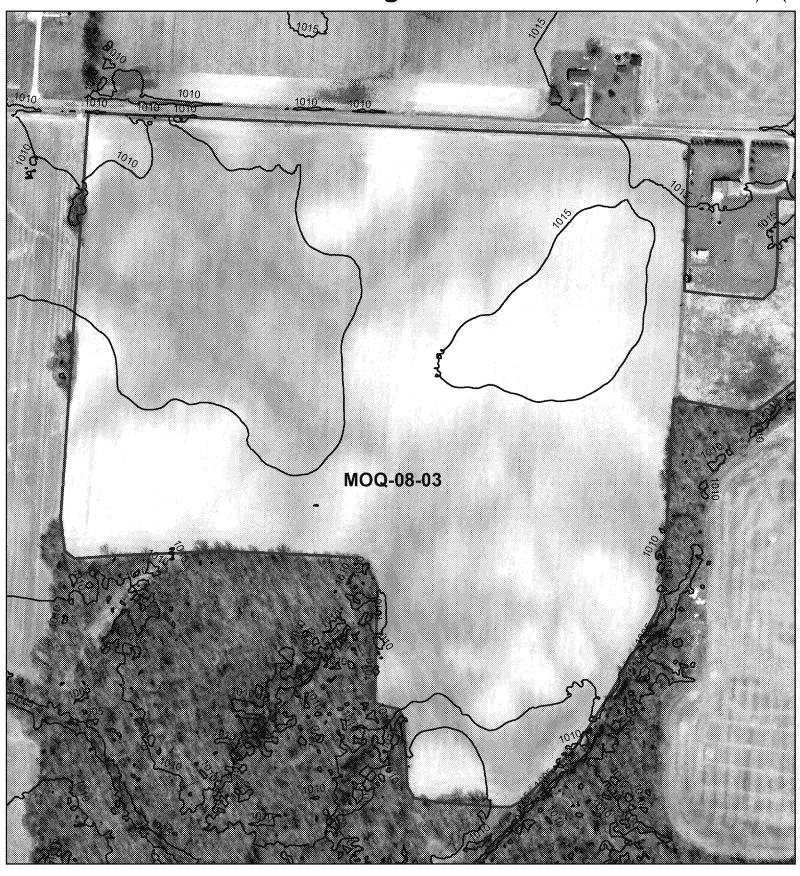
100ft Res Buffer

300ft Res Buffer

Waterways

33ft Water Buffer

150


0

300

600 Feet

Staley MOQ-08-03 Total Acreage: 49.2 acres

5ft Contours

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout (3)

Borrow Prt

Closed Depression

Gravel Pit. Gravetty Spot

Landfill

Lava Flow

Marsh or swamp

Perennial Water

Miscellaneous Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

Stony Spot Very Stony Spot

Wet Spot Other

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Morrow County, Ohio Survey Area Data: Version 13, Sep 19, 2014

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 5, 2011—Mar 10, 2012

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

	Morrow County, C	hio (OH117)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Ble1A1	Blount silt loam, end moraine, 0 to 2 percent slopes	10.6	21.6%
Ble1B1	Blount silt loam, end moraine, 2 to 4 percent slopes	3.0	6.2%
Gwe5B2	Glynwood clay loam, end moraine, 2 to 6 percent slopes, eroded	4.3	8.8%
Pm	Pewamo silty clay loam	31.1	63.4%
Totals for Area of Interest		49.1	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic

Morrow County, Ohio

Ble1A1—Blount silt loam, end moraine, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2s1j4 Elevation: 700 to 1,300 feet

Mean annual precipitation: 34 to 42 inches Mean annual air temperature: 48 to 54 degrees F

Frost-free period: 140 to 180 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Blount, end moraine, and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blount, End Moraine

Setting

Landform: End moraines on till plains

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Wisconsin till derived from limestone and shale

Typical profile

Ap - 0 to 10 inches: silt loam Bt - 10 to 33 inches: silty clay BC - 33 to 39 inches: clay loam Cd - 39 to 79 inches: clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: 30 to 60 inches to densic material

Natural drainage class: Somewhat poorly drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.20 in/hr)

Depth to water table: About 6 to 12 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 35 percent

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: D

Minor Components

Glynwood, end moraine

Percent of map unit: 9 percent

Custom Soil Resource Report

Landform: End moraines on till plains

Landform position (two-dimensional): Backslope, summit Landform position (three-dimensional): Side slope, crest

Down-slope shape: Convex Across-slope shape: Convex

Pewamo, end moraine

Percent of map unit: 6 percent Landform: End moraines on till plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear, concave Across-slope shape: Linear, concave

Ble1B1—Blount silt loam, end moraine, 2 to 4 percent slopes

Map Unit Setting

National map unit symbol: 2s1j5 Elevation: 700 to 1,300 feet

Mean annual precipitation: 34 to 42 inches Mean annual air temperature: 48 to 54 degrees F

Frost-free period: 140 to 180 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Blount, end moraine, and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blount, End Moraine

Setting

Landform: End moraines on till plains

Landform position (two-dimensional): Footslope, backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Wisconsin till derived from limestone and shale

Typical profile

Ap - 0 to 9 inches: silt loam
Bt - 9 to 32 inches: silty clay
BC - 32 to 37 inches: clay loam
Cd - 37 to 79 inches: clay loam

Properties and qualities

Slope: 2 to 4 percent

Depth to restrictive feature: 30 to 56 inches to densic material

Natural drainage class: Somewhat poorly drained

Runoff class: High

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.20 in/hr)

Depth to water table: About 6 to 12 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 35 percent

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm) Available water storage in profile: Low (about 5.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: D

Minor Components

Glynwood, end moraine

Percent of map unit: 9 percent Landform: End moraines on till plains

Landform position (two-dimensional): Backslope, summit Landform position (three-dimensional): Side slope, crest

Down-slope shape: Convex Across-slope shape: Convex

Pewamo, end moraine

Percent of map unit: 6 percent Landform: End moraines on till plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Gwe5B2—Glynwood clay loam, end moraine, 2 to 6 percent slopes, eroded

Map Unit Setting

National map unit symbol: 2t6lj Elevation: 720 to 1,320 feet

Mean annual precipitation: 34 to 42 inches Mean annual air temperature: 48 to 54 degrees F

Frost-free period: 140 to 180 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Glynwood, end moraine, and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Glynwood, End Moraine

Setting

Landform: End moraines on till plains

Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Side slope, crest

Down-slope shape: Convex

Across-slope shape: Linear, convex

Parent material: Wisconsin till derived from limestone and shale

Typical profile

Ap - 0 to 7 inches: clay loam

Bt - 7 to 26 inches: clay

BC - 26 to 30 inches: clay loam

Cd - 30 to 79 inches: clay loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: 24 to 42 inches to densic material

Natural drainage class: Moderately well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.01 to 0.20 in/hr)

Depth to water table: About 12 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 35 percent

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: D

Minor Components

Blount, end moraine

Percent of map unit: 9 percent

Landform: End moraines on till plains

Landform position (two-dimensional): Footslope, backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Pewamo

Percent of map unit: 6 percent

Landform: End moraines on till plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Concave

Pm—Pewamo silty clay loam

Map Unit Setting

National map unit symbol: 5q8m Elevation: 600 to 1,400 feet

Mean annual precipitation: 29 to 42 inches Mean annual air temperature: 46 to 55 degrees F

Frost-free period: 130 to 180 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Pewamo and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pewamo

Setting

Landform: Depressions, drainageways

Parent material: Till

Typical profile

H1 - 0 to 15 inches: silty clay loam H2 - 15 to 66 inches: silty clay loam H3 - 66 to 80 inches: clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Very poorly drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: Frequent

Calcium carbonate, maximum in profile: 30 percent Available water storage in profile: High (about 10.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: C/D

Minor Components

Sloan

Percent of map unit: 3 percent Landform: Flood plains

Custom Soil Resource Report

Condit

Percent of map unit: 3 percent

Landform: Depressions on ground moraines

Down-slope shape: Concave Across-slope shape: Concave

Carlisle

Percent of map unit: 3 percent Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave

Bennington

Percent of map unit: 3 percent

Landform: Rises on ground moraines, rises on end moraines, flats on ground

moraines, flats on end moraines

Landform position (two-dimensional): Summit, shoulder

Down-slope shape: Linear Across-slope shape: Linear

Blount

Percent of map unit: 3 percent

Landform: Flats on ground moraines, flats on end moraines, rises on ground

moraines, rises on end moraines

Landform position (two-dimensional): Summit, shoulder

Down-slope shape: Linear Across-slope shape: Linear

More sand and less clay in the subsoil

Percent of map unit:

Landform: Depressions, drainageways

Thinner or lighter colored surface layer

Percent of map unit:

Landform: Depressions, drainageways

Slopes of 3 or 4 percent

Percent of map unit:

Landform: Depressions, drainageways

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:15,800. Area of Interest (AOI) Not rated or not available Area of Interest (AOI) Water Features Warning: Soil Map may not be valid at this scale. Soils Streams and Canals Soil Rating Polygons Transportation Enlargement of maps beyond the scale of mapping can cause 0 - 25 Raiss پښه misunderstanding of the detail of mapping and accuracy of soil line 25 - 50placement. The maps do not show the small areas of contrasting Interstate Highways soils that could have been shown at a more detailed scale. 50 - 100 **US Routes** 100 - 150 Major Roads Please rely on the bar scale on each map sheet for map 150 - 200 measurements. Local Roads 4000046 > 200 Background Source of Map: Natural Resources Conservation Service Not rated or not available Aerial Photography Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857) Soil Rating Lines 0 - 25Maps from the Web Soil Survey are based on the Web Mercator 25 - 50 projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the 50 - 100 Albers equal-area conic projection, should be used if more accurate 100 - 150 calculations of distance or area are required. 150 - 200 This product is generated from the USDA-NRCS certified data as of > 200 the version date(s) listed below. Not rated or not available Soil Survey Area: Morrow County, Ohio Soil Rating Points Survey Area Data: Version 13, Sep 19, 2014 0 - 25 25 - 50 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. 50 - 100 100 - 150 Date(s) aerial images were photographed: Oct 5, 2011—Mar 10, m 2012 150 - 200 > 200 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Depth to Any Soil Restrictive Layer (MOQ-08-03)

			y by Map Unit — Morrow County, Ohio (OH117)				
Map unit symbol	Map unit name	Rating (centimeters)	Acres in AOI	Percent of AOI			
Ble1A1	Blount silt loam, end moraine, 0 to 2 percent slopes	99	10.6	21.6%			
Ble1B1	Blount silt loam, end moraine, 2 to 4 percent slopes	94	3.0	6.2%			
Gwe5B2	Glynwood clay loam, end moraine, 2 to 6 percent slopes, eroded	76	4.3				
Pm	Pewamo silty clay loam	>200	31.1	63.4%			
Totals for Area of Inter-	est	49.1	100.0%				

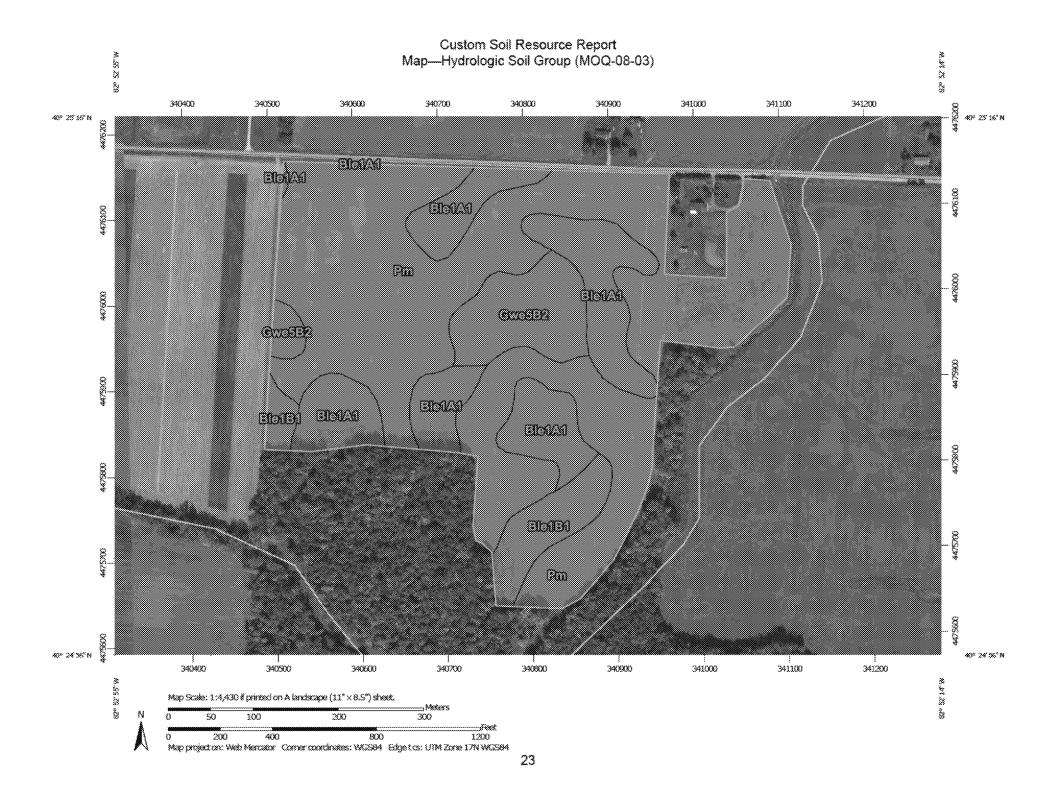
Rating Options—Depth to Any Soil Restrictive Layer (MOQ-08-03)

Units of Measure: centimeters

Aggregation Method: Dominant Component Component Percent Cutoff: None Specified

Tie-break Rule: Lower Interpret Nulls as Zero: No

Hydrologic Soil Group (MOQ-08-03)


Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils

MAP LEGEND **MAP INFORMATION** The soil surveys that comprise your AOI were mapped at 1:15,800. Area of Interest (AOI) C Area of Interest (AOI) C/D Warning: Soil Map may not be valid at this scale. Soils D Soil Rating Polygons Not rated or not available Enlargement of maps beyond the scale of mapping can cause ,A, misunderstanding of the detail of mapping and accuracy of soil line Water Features A/D placement. The maps do not show the small areas of contrasting Streams and Canals soils that could have been shown at a more detailed scale 8 Transportation 8/0 Rails *** Please rely on the bar scale on each map sheet for map O measurements. Interstate Highways C/D **US Routes** 488644F Source of Map: Natural Resources Conservation Service 0 Major Roads Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857) Not rated or not available Local Roads Soil Rating Lines Background Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Aerial Photography distance and area. A projection that preserves area, such as the A/D Albers equal-area conic projection, should be used if more accurate 8 calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Morrow County, Ohio Survey Area Data: Version 13, Sep 19, 2014 Not rated or not available Soil map units are labeled (as space allows) for map scales 1:50,000 Soil Rating Points or larger. A Date(s) aerial images were photographed: Oct 5, 2011—Mar 10, A/D 2012 8/0 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Hydrologic Soil Group (MOQ-08-03)

	Hydrologic Soil Group— Su	ımmary by Map Unit — I	Morrow County, Ohio (OH117)	
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
Ble1A1	Blount silt loam, end moraine, 0 to 2 percent slopes	D	10.6	21.6%	
Ble1B1	Blount silt loam, end moraine, 2 to 4 percent slopes	D	3.0	6.2%	
Gwe5B2	Glynwood clay loam, end moraine, 2 to 6 percent slopes, eroded	D	4.3	8.8%	
Pm	Pewamo silty clay loam	C/D	31.1	63.4%	
Totals for Area of Inter	est	49.1	100.0%		

Rating Options—Hydrologic Soil Group (MOQ-08-03)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

JASON STALEY

Farm

CENTRAL OHIO FARMERS COOP WALDO B 420 W MAIN ST

00111498 TOM CRAWFORD

Received: 20-Nov-13

Lab Number	310202		310204	310205	310206	310207		310209			310212	310213
Į.	SALLY ELLIS	:	į.	SALLY ELLIS		SALLY ELLIS	SALLY ELLIS		SALLY ELLIS		SALLY ELLIS	
Sample No.	3	2	3	4	\$	\$	7	8	.*	10	11	12
C.B.C.	16.8	14.0	10.7	14.4	17,3	16.0	15.2	15.4	15.2	17.2	14.2	16.0
Org Matter	3.5	3.8	2.2	3.0	4.3	3.9	3.1	2.7	3.4	4.9	3.8	3.5
Scil pH	8.5	6.8	7.8	6.7	6.9	5.4	6.1	6.1	6.4	6.9	6.8	6.6
Lime Index	68	70	70	70	70	68	67	67	68	70	70	69
F lbs/ac	41	82	41	46	85	42	48	SS	53	88	49	51
K lbs/ac	355	298	262	383	346	334	381	340	248	330	271	361
Ca lbs/ac	4429	4161	3104	4299	5177	4214	3524	3523	3888	5092	4145	4265
Mg lbs/ac	709	771	632	759	939	644	562	621	665	976	841	904
8048 lbs/ac												***************************************
B lbs/ac												
Cu lbs/ac												
Mn lbs/ac												
Zn lbs/ac										***************************************		***************************************
Ca Sat'n.	66 %	74 %	73 %	75 %	75 %	66 %	58 %	57 %	54 %	74 %	73 ≹	67 %
Mg Sat'n.	17 %	23 %	24 %	22 %	22 %	17 %	15 %	17 %	18 %	23 %	24 %	23 %
K Sat'n.	3 %	3 %	3 %	3 %	3 %	3 %	3 %	3 %	2 %	3 %	2 *	3 %
Base Sat'n.	85 %	300 %	100 %	100 %	100 %	85 %	76 %	77 %	84 %	1.00 %	100 %	93 %
Ca/Mg	3.7	3.2	2.9	3.4	3.3	3.9	3.8	3.4	3.5	3.1	3.0	2.8
Mg/K	6.5	8.4	7,9	6.5	8.8	6.3	4.8	8.0	8.7	9.6	10.1	8.2
Na lbs/ac												
Fe												
SS mS/cm												
lbs/ac												
NC3N ppm	•••••••				·····							
NH4-N ppm												
Pat. Sand												***************************************
Pat. Silt												
Pot. Clay	concentration reservation and the second											ocoocccc
Texture												

JASON STALEY

CENTRAL OHIO FARMERS COOP WALDO B 420 W MAIN ST

00111498 TOM CRAWFORD

Farm

Received: 20-Nov-13

Lab Number	309788	309789	309790	309791	309792	309793	309794
Field	SALLY ELLIS						
Sample No.	13	14	15	18	17	18	19
C.B.C.	12.5	11.8	12.2	12.0	9.3	15.3	13.9
Org Matter	2.7	2.0	2.3	2.5	1.8	4.0	3.1
Soil pH	6.4	8.5	6.2	6.3	7.1	6.7	7.1
Lime Index	69	69	68	68	70	69	70
P lbs/ac	36	48	44	39	49	53	28
K lbs/ac	228	193	214	163	154	268	210
Ca lbs/ac	3401	3202	2895	2895	2785	4448	4276
Mg lbs/ac	616	576	561	529	522	652	721
SC4S lbs/ac							
B lbs/ac							
Cu lbs/ac							
Mn lbs/ac							
Zn lbs/ac							
Ca Sat'n.	58 %	68 %	59 %	60 %	75 %	73 %	77 %
Ng Sat'n.	20 %	20 %	19 %	18 %	23 %	18 %	21 %
K Sat'n.	2 %	2 %	2 %	2 %	2 %	2 %	2 %
Base Sat'n.	31 %	90 %	80 %	80 %	100 %	92 %	100 %
Ca/Mg	3.3	3.3	3.1	3.3	3.2	4.1	3.6
Mg/K	8.8	9.7	8.5	10.5	11.1	7,9	11.2
Na lbs/ac							
Fe							
SS mS/cm							
lbs/ac							
NOIN ppm							
NH4-N ppm							
Pct. Sand							
Pct. Silt							
Pct. Clay							
Texture							